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SURFACE-FRICTION COEFFICIENT IN TURBULENT FLOW AT A 

BOUNDARY LAYER 

V. M. Kapinos UDC 532.526 

Using Thompson two-parameter velocity profiles equations defining the dependence of 
the surface-frlctlon coefficient on the integral characteristics of the boundary layer 
are obtained. 

Because the initial system of differential equations is not closed, the calculation of 
a turbulent boundary layer requires the use of various kinds of empirical relations. In in- 
tegral and quasiintegral methods of calculating turbulent friction, one of the =losing equa- 
tions is taken in the form of a dependence of the surface-friction coefficient on some param- 
eters of the boundary layer. Relations of similar type are used in differential calculation 
methods assuming a polynomial specification of the frictional-stress distribution over the 
boundary-layer thickness. In most cases, it is borne in mind here that turbulent flow is 
described from the viewpoint of its local equilibrium, although calculation methods employing 
empirical data on the frictional drag and with the determination of a flow field with "in- 
heritance" are known [I]. 

Numerous empirical dependences expressing the friction coefficient as a function of the 
Reynolds number referred to the longitudinal coordinate or the momentum-loss thickness are 
known. Single-parameter formulas of the form cf = f(Re), cf = f(Re6) are valid at large 
Reynolds numbers for boundary layers of a plane plate; sometimes, it is used, together with 
the assumption that H = const, in calculations of gradient flows by an integral method. It 
is assumed here that the influence of the pressure gradient is taken into account intrinsi- 
cally by the integral momentum relation. 

Two- and three-parameter dependences are of greater accuracy, reflecting more completely 
the features of the flow in the boundary layer-- in particular, with zero pressure gradient. 

The most widespread approach is the semlempirical method based on the law of the wall, 
the formula of [2] 
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c/= 0.246.10-~176 (1) 

In a series of integral methods -- see [3, 4], etc. -- an equation derived from the Coles 
wake law [5] is used to determine the frictional stress at the wall 

- - v *  = -if-In v + + B ,  o . =  P =o)Vl, (o= . (2) 

Other equa t ions  of  the  f r i c t i o n  law have been used .  Some of  t h e s e  a r e  noted  in  Table l [ 6 -  
12]. In [i, 6, 8, 13], preference is given to the dependence cf - f(H, Re o) proposed in [14]. 
In [6], it was noted that the family of Thompson velocity proflles on which the dependence 
cf = f(H, Re%) Isbased Is among the most perfect of these proflles. Numerous comparisons of 
calculated and experimental data have shown [I, 13, 15, 16] that two-parameter Thompson pro- 
f i l e s  approximate  the  v e l o c i t y  d i s t r i b u t i o n  i n  the  boundary l a y e r  wi th  high accuracy .  This 
i s  a l s o  i n d i c a t e d  by the  a n a l y s i s  i n  [20] o f  the  exper iments  of  the  S tanford  con fe rence  [17] 
and the  exper imen ta l  i n v e s t i g a t i o n s  [18, 19] .  The comparison in  [20] of  c a l c u l a t e d  v e l o c i t y  
p r o f i l e s  wi th  expe r imen ta l  da ta  f o r  25 exper iments ,  i nc lud ing  25 d i f f e r e n t  f l o w s ,  some of 
them r e l e x a t t o n a l ,  over  a broad range of  v a r i a t i o n  of  H and Re0, i n v a r i a b l y  showed p r a c t i c a l l y  
complete  co inc idence  o f  the  e x p e r i m e n t a l  and c a l c u l a t e d  v e l o c i t y  d i s t r i b u t i o n s .  

Thompson r e p r e s e n t e d  the  dependence of  the  s u r f a c e - f r i c t i o n  c o e f f i c i e n t  on H and Re e in  
the  form of  a network of  curves  H = f (Re  e) wi th  the  parameter  c f .  This network was a l s o  g i -  
ven in  [16] .  In p r a c t i c a l  c a l c u l a t i o n s ,  i t  i s  d i f f i c u l t  to  use  a network of  cu rves .  The re fo re ,  

TABLE I. S u r f a c e - F r i c t i o n  Coefficients 

Ref. 

[6] 

[7] 
[8] 

[9] 

[ 7 ]  

[10] 

[ l l ]  

[ 1 2 ]  

Friction law 

F 8,05 .]I,7os Re~_O,26 s 
cy = 0,0580 l.lg /.it ,sl8 

c /= 1,28 (In R% )-] ,74 exp [-- H(I,07+0,31 In (In R%)] 

c / =  0,3 exp ( - -  1,33//) (lg Re e )--(! ,74+0,31H) 

Cf=2 [ l ~ l n  U,6__.~*, + 2G --4,25G0'5+2,12] - '  

oH 
^ ^ ^ [ 100 \ ( 0 , 2 5 - - 6 , 9 . 1 0 ' k / )  

c.f = u,t~lO ~-'-~e ) , k t > O  

c'='(2,SlnR2e+3,8)=--0'O0210k'( ' kIRe~'163~O'668k"o,~,313/ 

v dU1 
kz ~< O' k'= (-- kl" 10D~ kt U~ dz -- 

c t 0 dp 
= -  ~ ~--gggo. ~ =  ~ 

[ 15 6 ( 
c.f = 2 2,44 In r -- ~ -- "7- -J-- I0 3--[- 

,2" = 1,2Re + Go '~--I 
~2 0.# ] ' 

8 . dU1 
Go = 

Uz dx 

O= 
c/ = 1 + 0,1367f + 0,015: s + 0,00337[ 3, : = - • 
C f. "~ 

dU1 
• ~ , Cro is the drag coeff icient when f = 0 

c §  ( 0 , 0 0 0 5 6 5  ~ Re~_O,25 
-~- = ~ o , ~ r  - o ,oo~I  

0 dp Re~'25 
,.1, 
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in [i], for example, a preliminary tabulation of the functions cf(H, Re0) and Rea(H, Re0) 
was recommended. The problammay evidently be significantly simplified if an analytical 
description of the network of curves or its approximation is obtained. 

The Thompson profile is used here 

U1 = 7 i ,+ 1--7 .  (3) 

me weighting function Y is equal to u n i t y  in the range 0 < y/6~<0.05 and to zero close to 
the external edge of the boundary layer, where 0.95 < y/6<~_1. Thompson represented the 
dependence 7(Y/~) by a curve generallzing the experimental data. In [13], the interval 0.05 
< y/6~-~0.95 was divided into three sections and was approximated within each section by a 
second-order polynomial. 

I t  may be shown [21] t h a t  the  f u n c t i o n  Y i s  r e l a t e d  to  the  Coles wake f u n c t i o n  W by a 
s imple  l i n e a r  dependence y ffi 1--0.SW. I f  the  Hinze approximat ion  f o r  W i s  adopted (W = 1 -  
cos  ~y /6 ) ,  then t h e  f u n c t i o n  7 w i l l  be  d e s c r i b e d  by the fo l l owing  equa t ion  i n  the  range y /6  ffi 
0.05-0.95 

" 7 = 0 5  ( l + c ~  ~t r l )9  ' rl---- Y----6 0.05. (4) 

The d i f f e r e n c e  in  the  v a l u e s  of  y c a l c u l a t e d  from Eq. (4) and the  G a l b r a i t h  and Head depend- 
ence i s  s l i g h t  [ 2 1 ] .  

Thus, the  e x p r e s s i o n  ob ta ined  fo r  the  Thompson v e l o c i t y  p r o f i l e  i s  

+o 0 
U1 . 9 

Rev= " U~y 

The paramete r s  k and B in  the  equa t i on  a r e  taken to  be 0.4186 and 5 .45 ,  accord ing  to  the  da ta  
of  Ya te l .  

In the laminar subiayer and the buffer layer, the velocity distribution is taken in the 
form [13]: when 0 < y+ < 4 

when 4 < y+ < 30 

U + = y+ ,  

U+ = 4,187-- 5,745 In y+ + 5.11 (In y+)2 __ 0.767 (In y+)3. 

(6) 

(7) 
The distribution in  Eq. (7) was proposed by Dvorok. 

In  the  range 30~/~U~6 < y /~  < 0 .05 ,  where y ffi l ,  the  v e l o c i t y  p r o f i l e  i s  d e s c r i b e d  by a 
l o g a r i t h m i c  w a l l  law 

= o In R%o-t-B . 
U1 (8) 

S u b s t i t u t i n g  Eqs. (5)-(8) i n t o  the  e x p r e s s i o n s  f o r  the  d i sp lacement  t h i c k n e s s  and the  momen- 
t u m - l o s s  thickness gives 

6* 
6 - 0 . 5 - - ~  (0.80095@ 1,1943 In Re6o)-]- 50,7 

Re---~- ' (9) 

06 = 0.1125--I-- o) (0.65687 In R%(o --  0.019389) - -  (o z [ 2.21090 (In Reso) 2 + 

1 1 .o, § 1.8667 In R%o § 2,94987 60.4_._88 (1 16.44o . 
Re8 
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Fig .  1. The dependence c f  = f (Res ,  H) ac -  
cording Co Eqs. (9) and ( i 0 ) ( c o n t i n u o u s  
curves)  and Eq. (11) (dashed cuves) :  1) cf  = 
0.0002; 2) 0.0003; 3) 0.0004; 4) 0.0006; 5) 
0.0008; 6) 0.001; 7) 0.0015; 8 ) 0 . 0 0 2 ;  9) 
0.0025; i0) 0.003; 11) 0.004; 12) 0.005. 

The equa t ions  ob ta ined  g i v e  an a n a l y t i c a l  d e s c r i p t i o n  of the  network of T h ~ s o n  curves 
(Fig.  1).  When ~ = cons t ,  s p e c i f y i n g  d i f f e r e n t  va lues  of Re6 leads  Co r e s u l t s  f o r  6 , /6  and 
hence f o r  H - 6 , /8  and Bee - Re66/6. F i n a l l y ,  the  r equ i r ed  dependence c f  - f (H,  Re e) i s  ob- 
t a i n e d .  In  c o n s t r u c t i n g  the network of curves i n  [14],  the  va lues  H and Re e were ob ta ined  
by g r a p h i c a l  i n t e r p o l a t i o n .  

Equat ions (9) and (10),  de te rmin ing  the s u r f a c e - f r i c t i o n  c o e f f i c i e n t  i n  i m p l i c i t  form, 
a l so  i nc lude  ocher  c h a r a c t e r i s t i c s ,  which are  u s u a l l y  determined i n  the  course  of boundary-  
l a y e r  c a l c u l a t i o n .  In  c o n t r a s t  co the  above empi r i ca l  dependences,  Eqs. (9) and/(10)  a l low 
cf  - f (H,  Re6) Co be c a l c u l a t e d  over a broad range of v a r i a t i o n  of  the  arguments.  

I t  i s  known t h a t  the  formula of [2] ,  which i s  most o f t e n  used,  i s  ob ta ined  on the bas i s  
of exper imenta l  da t a  bounded by the i n t e r v a l s  1.2 ~ H < 2 .0 ,  l0  s < Re e < 2" 104. However, 
beyond the  l i m i t s  of t h i s  r eg ion ,  as noted  i n  [22],  the  e r r o r  may reach  40X. 

As i s  ev iden t  from Fig.  2, the  curves of H = f(Re 0) wi th  cf  = consC p l o t t e d  from the 
formulas  of [6-8] a l s o  l i e  c lo se  Co the  Thompson curves only a t  va lues  of H and Re e i n  the  
middle  of the  g iven  range of v a r i a t i o n .  When cf  > 0.002 and cf  < 0.008,  the  d e v i a t i o n  be~ 
comes c o n s i d e r a b l e .  The e x p l a n a t i o n  f o r  t h i s  i s  t h a t  the  Thompson model i s  based on a d e f i -  
n i t e  mathemat ica l  model, whereas the  remaining formulas  d i r e c t l y  approximate exper imenta l  
da t a  in  a l i m i t e d  range of v a r i a t i o n  of the  independent  v a r i a b l e s .  

The agreement wi th  the  Thompson curves may be improved by some compl ica t ion  of the  
approximating expres s ions .  The dashed pa rame t r i c  curves i n  F ig .  1 a re  p l o t t e d  accord ing  to 
the  formula  

c I = 0.000423 exp [-- KH + 14.497 (in Rea) -~ 61, (11) 

K = 1.543 when c1~0.001, K = 1.299c} "~176 whenc] ~0.001, 

caking account  of the  n o n l i n e a r i t y  of the  dependence H = f (Ree ) .  Agreement of the  cont inuous  
and dashed curves  i s  observed over a s u f f i c i e n t l y  broad range of  Re 6 . Equat ion ( l l )  i s  sim- 
p l e r  than the  i n i t i a l  Eqs. (9) and (10) bu t ,  of course ,  l acks  something i n  accuracy .  

Equat ions  (9) and (10) ,  which de sc r i be  the  law of  f r i c t i o n  i n  a t u r b u l e n t  boundary l a y e r ,  
a l s o  a l low the  boundary - l aye r  t h i cknes s  6 to  be determined us ing  the  i n t e g r a l  c h a r a c t e r i s t i c s  
6" and e. 

Close Co the  e x t e r n a l  edge of  the  boundary l a y e r ,  even a smal l  e r r o r  of  the  v e l o c i t y  
p r o f i l e  l eads  to marked change in  the  bounda ry - l aye r  t h i cknes s  ~, equal  to  the  c o o r d i n a t e  
a t  which U = 0.995U,. Theres  the  d e t e r m i n a t i o n  of  6 d i r e c t l y  from the  measured or  c a l c u -  
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3 ~ 5 1El Re e 
Fig. 2. Comparison of the curves of H = f(Re 8) 
at cf = const according to the formulas of [8] 
(a), [6] (b), and [7] (c); continuous curve (d) 
correspond to the Thompson model: 1) c e ffi 0.00015; 
2) 0.0003; 3) 0.0008; 4) 0.002; 5) 0.004. 

lated velocity profile is unreliable. At ~he same time, the integral characteristics of the 
boundary layer 6" and 8 are calculated, as is known, with sufficiently high accuracy. This 
accuracy may also be transferred to the determination of the boundary-layer thickness if Eq. 
(9) or (i0) is used. The value of ~ is found here by the method of successive approximation. 

NOTATION 

of, friction coefficient; H = 6*/8, form parameter; ~*, displacement thickness; 8, mo- 
mentum-loss thickness; U, current velocity over the boundary layer thickness; U,, velocity 
at the external boundary of the boundary layer; (U/U,)in, velocity distribution according 
to the wall law, Eq. (8); ~, boundary-layer thickness; v, = ~ ,  dynamic velocity; U + = 
U/v,; y+ -- y/v*; H, parameter in the Co!es wake law; Rey ffi U~y/v; Re 6 = Uz~/v; Re 8 = U,%/v. 
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MATHEMATICAL MODEL OF HYDRATE FORMATION IN THE FLOW 

OF MOIST GAS IN TUBES 

V. M. Bilyushov UDC 532. 542 

The problem of hydrate formation in the flow of moist gas in tubes is formulated, 
under the assumption that the temperature of hydrate formation depends not only 
on the pressure but also on the water-vapor concentration at the phase-transitlon 
surface. 

The problem of hydra te  fo rmat ion  in  gas p i p e l i n e s  was f i r s t  cons idered  in  [1-3] ,  where 
the conditions of hydrate formationwere described, and recommendations for the prevention 
of hydrate formation in gas-plpellne operations were made; these reduce to the need to dry 
the gas, removecondensed water, and ~nploy pipeline operating conditions that eliminate the 
possibility of hydrate formation. The problem was then discussed in [4-10], where attempts 
were made to determine in advance the sites of possible obstruction of the pipeline by hy- 
drates, and to give a quantitative calculation of the mass of hydrate forming in the course of 
gas transport. However, these workshave a series of deficiencies. In [8], for exmnple, the 
mass rate of hydrate formation was estimated, but no,mention was made of which section of the 
pipeline was subject to hydrate deposition. In [9], the region of possible hydrate formation 
was determined on the basis of the thermodynamic conditions of moisture removal from the gas, 
but the process of hydrate depositlon itself was not considered. In [10], the model of hy- 
drate formation was constructed from the numerical solution of the equations of nonisothermal 
motion of a real gas, and the action Of the hydrate obstructlonwas modeled by a local resis- 
tance with an unknown drag coefficient, which is a significant deficiency of the model. 
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